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The transport and biological availability of the toxic, radioactive element 
uranium (U) towards reduction to the less soluble U(IV) species may be lim-
ited by co-precipitation with Fe-oxide minerals. We examined the interac-
tion dynamics between U(VI) and iron (Fe) oxides during crystallization by 
synthesizing Fe-oxide phases [0.5-5.4 mole %U/(U + Fe)] using U(VI) and 
Fe(III) solutions. Our studies show that U6+ is incorporated in Fe oxides as 
the uncommon uranate species (without axial O atoms) until saturation is 
reached, whereby U(VI) forms crystalline U(IV)O

2
2+ phases.

The geochemical speciation of uranium (U) influences its movement 
and biological availability in the environment. This information 
is often used to predict nuclear waste repository performance.  
In oxidized environments, U exists as the highly soluble uranyl 
[U(VI)O

2
2+] species with two axial U=O double bonds at ~1.8 Å.  

In contaminated materials, solid phase U(VI) typically exists as the 
uranyl mineral, schoepite [UO

3
·2H

2
O]. Uranium(VI) can also exist 

as the less common uranate solid phase, which has at least three 
single U-O bonds and no axial double bonds. However, uranates 
have not been found in nature. The environmental mobility of U is 
influenced by many processes (Figure 1). Another process that may 
influence U mobility is co-precipitation with other host minerals 

(Figure 1). Uptake of U and other metals occurs during the formation 
of crystalline and amorphous Fe oxides but the local structure of U in 
these oxide materials has not been characterized. 

Leaching of the synthetic U-Fe oxides typically removed most sorbed 
and solid phase U(VI) species, leaving on average ~0.6 mol % U. X-ray 
diffraction and infrared spectroscopic studies (Figure 2A-B) indicate 
that hematite (Fe

2
O

3
) formation is preferred over that of goethite 

(FeOOH) when the U level in the Fe-oxides exceeds 1 mol % U. Our 
studies with unleached U/Fe solids indicate a relationship between the 
mol % U in the Fe oxide, and the existence of the spectral features that 
can be assigned to uranyl species. These spectral features were unde-
tectable in leached solids, suggesting solid phase and sorbed U(VI)O

2
2+ 

species are extracted by leaching. Using uranium X-ray Absorption 
Fine Structure (XAFS) at NSLS beamlines X23A2 and X26A, analyses 
of unleached solids containing <1 mol % U revealed that U(VI) exists 
with four O atoms at radial distances of 2.21 and 2.36 Å and Fe atoms 
at 3.19 Å (Figure 2C). Due to the large size of UO

2
2+ (~1.8 Å) relative 

to Fe3+ (0.65 Å), the UO
2

2+ ion is unlikely to substitute for the Fe. Our 
results indicate that U6+ (~0.72-0.8 Å) is incorporated in the Fe oxides 
as uranate until a point of saturation is reached. Beyond this concen-
tration, excess U precipitates as crystalline U(VI) phases resembling 
schoepite.

In summary, our findings indicate that the long-term association of U 
in the contaminated environment could result in the structural incor-
poration of U in Fe oxide host phases. In nature, precipitation of pure 
U phases should occur at a kinetically faster rate than the structural 
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incorporation of U into Fe oxides. Precipitation of U as pure mineral 
phases should be favored at high dissolved U concentrations, whereas 
sorption and co-precipitation of U are most likely favored at lower U 
concentrations. In aged, U-contaminated Fe-rich soils, up-
take of U by Fe oxides may be significant since ~1 mol % U 
can be incorporated. The importance of these mechanisms 
in U-contaminated materials has not been estimated.

Figure 1. Mechanisms by which U mobility 
can be retarded in the surface and subsurface 
geologic environment. A) Precipitation of 
U(VI) and U(IV) phases. B) Microbial uptake 
(internal or external) of U. C) The sorption 
of U by organic or inorganic material such 
as humic acids and Fe oxides (respectively). 
D) Occlusion of U by clay and metal oxide 
coatings. E) Under reducing conditions, 
the formation of surface rinds of U(IV) on 
U(VI) minerals can also limit U mobility 
because U(IV) solids are less soluble. F) 
Co-precipitation of U with amorphous and 
crystalline host minerals may limit U mobility 
(adapted from Duff, Coughlin and Hunter, 
Uranium Co-precipitation with Fe Oxide 
Minerals. Geochim. Cosmochim. Acta, 66, 
3533-3547 (2002.)

Figure 2. (A) Uranium XAFS spectra (L
3
 

edge) Fourier transform and fit data for the 
U-Fe oxide co-precipitate sample, FeU22. 
Inset: The U XANES spectra (L

3
 edge) for 

U(IV)O
2
, the U(VI) mineral meta-schoepite, 

the FeU2 and FeU22 U-Fe oxide co-
precipitate samples. The XANES spectra for 
uranyl nitrate contained post-edge multiple 
scattering resonance (MSR) features typically 
observed for uranyl-containing solids (data 
not shown). (B) FTIR spectra for hematite, 
the synthetic U-Fe oxide co-precipitates 
(FeU21 and FeU22) and the synthetic mineral 
meta-schoepite. Three of the spectra for the 
samples are adjusted linearly so that their 
absorbance peaks are proportional to that 
of meta-schoepite and (C) Powder X-ray 
diffraction spectra for hematite, the synthetic 
U-Fe oxide co-precipitates and the synthetic 
(adapted from Duff, Coughlin and Hunter, 
2002).


